Tackling the climate crisis requires sustainable, just, solutions. Burning wood that comes directly from the forest (primary forest biomass) releases vast emissions. Yet the industry has boomed in the last decade, leading scientists, NGOs and civil society to raise concerns. The current Renewable Energy Directive is financially rewarding types of bioenergy that actively increase emissions compared to fossil fuels over the timeframe we still have to limit the climate crisis - the next 30 years. Even the European Commission’s Joint Research Centre found, in its latest report on the issue, that most forest biomass (primary wood that is taken out of the forest) being burnt in the EU is harmful to the climate, to biodiversity, or both.

All the while, the climate crisis intensifies, as more carbon dioxide is emitted. Less and less carbon is stored in Europe’s forests due to harvesting. Action to protect and restore forests in the EU could double the amount of carbon dioxide (CO₂) they absorb and contribute to halting biodiversity decline. If protected and restored instead of logged and burned, natural forests can fulfil their role as the world’s most efficient carbon sinks. This factsheet explains the climate impacts of burning forest biomass, and why burning forest biomass is not a climate solution.

WHY BIOENERGY IS NOT A CLIMATE SOLUTION

THE FACTS

FACT 1 • BIOENERGY CAN BE JUST AS DIRTY AS FOSSIL FUELS

- Over a 20-year period, power generation using wood from conifer plantations emits 1879 grams of CO₂ per kilowatt hour.

THESE WOOD EMISSIONS ARE 80% greater than coal power

- Over a 40-year period emissions are reduced because the trees have had longer to re-capture carbon, but biomass emissions would still be 49% greater than coal power, greater than coal power emissions.
FACT 2 • RE-ABSORPTION OF CARBON DIOXIDE RELEASED FROM LOGGING AND BURNING TAKES TIME

- When a forest is logged and burned for energy, CO₂ is immediately released to the atmosphere, but it takes time for new trees to re-absorb it – this is known as the carbon debt.
- Depending on the volumes and species of trees involved and how much of the forest is able to re-grow, the carbon debt may take decades or centuries to pay back.

FACT 3 • BIOMASS HARVESTING IS INCREASING

- Between 2016 and 2018, total biomass harvested from forests across Europe increased by 69% compared to 2011 to 2015. Clear cuts increased by about 30%.
- The maps demonstrate the increase in harvesting across Europe from 2004 to 2018, with particularly high intensity harvesting taking place in Estonia, Finland, France, Latvia, Poland, Portugal, Spain and Sweden.
FACT 4 • DEMAND FOR WOOD FOR ENERGY IS INCREASING

- **EU biomass use has increased 100 % since 2000** In their National Energy and Climate Plans, Member States foresee an 18 % increase in the use of biomass for electricity, and a 10 % increase in its use for heating. This is likely to be an underestimate since these plans were drawn up before the new more ambitious target to reduce net emissions by 55 %.
- Research suggests that in the EU increasing amounts of wood residues and other raw materials will be required to meet demand, which will increase by 30-40 % in the next five years.

FACT 5 • FOREST BIOENERGY IS COMPETING WITH OTHER WOOD USES

- The use of wood for energy is increasing, taking up an increasing proportion of the total harvested biomass, and is growing much more rapidly than wood for material uses.

FACT 6 • INCREASE LOGGING IS CONTRIBUTING TO EUROPE’S DECLINING CARBON SINK

- Harvesting intensity (the volume of timber extracted per hectare) has a strong impact on forest carbon stocks.
- The 2019 EU action progress report shows that between 2013-2017, increased harvesting significantly contributed to reducing the carbon sink.
- If Member States move forward with their proposed land-use plans for over the next decade, by 2030 forests could be absorbing a third less CO₂ than they were in 2005.
- The Land Use, Land-Use Change and Forestry (LULUCF) sector, which accounts for emissions and removals of CO₂, could become a net emitter after 2030.

Source: UNFCCC GHG data 2020